Экологичная деревянная электроника от железа

Блог

ДомДом / Блог / Экологичная деревянная электроника от железа

Sep 15, 2023

Экологичная деревянная электроника от железа

Nature Communications, том 13, номер статьи: 3680 (2022) Цитировать эту статью 10 тыс. Доступов 19 Цитирований 53 Подробности об альтернативных метриках Экологически чистая деревянная электроника поможет облегчить

Nature Communications, том 13, номер статьи: 3680 (2022) Цитировать эту статью

10 тысяч доступов

19 цитат

53 Альтметрика

Подробности о метриках

Экологически чистая деревянная электроника поможет устранить недостатки современной «зеленой электроники» на основе целлюлозы. Здесь мы представляем катализируемую железом лазерно-индуцированную графитацию (IC-LIG) как инновационный подход для гравировки крупномасштабных электропроводящих структур на дереве с очень высоким качеством и эффективностью, преодолевающий ограничения обычного LIG, включая высокую абляцию, термические повреждения, необходимость при многоступенчатой ​​лазерной генерации необходимо использовать антипирены и инертную атмосферу. Покрытие на водной биологической основе, вдохновленное историческими железо-галловыми чернилами, защищает древесину от лазерной абляции и термического повреждения, одновременно способствуя эффективной графитизации и сглаживанию неровностей основы. Крупномасштабные (100 см2), высокопроводящие (≥2500 См м-1) и однородные участки поверхности гравируются за один шаг в окружающей атмосфере с помощью обычного CO2-лазера, даже на очень тонком (∼450 мкм) деревянном шпоне. Мы продемонстрировали обоснованность нашего подхода, превратив древесину в высокопрочные тензодатчики, гибкие электроды, емкостные сенсорные панели и электролюминесцентное устройство на основе LIG.

Разработка электронных устройств из возобновляемых и биоразлагаемых материалов с использованием экологически чистых производственных маршрутов («зеленая электроника») является обязательной для удовлетворения потребностей устойчивого общества1. Предстоящее внедрение подхода «Интернета вещей» (IoT) в «умные» здания и даже города ставит нерешенные проблемы с точки зрения масштаба и долговечности устойчивых электронных материалов2,3. В современной «зеленой» электронике сегодня преобладают относительно небольшие одноразовые устройства, изготовленные из материалов на основе (нано)целлюлозы4,5,6. Однако их устойчивость может быть поставлена ​​под сомнение из-за множества трудоемких шагов с точки зрения количества энергии и химикатов, необходимых для выделения и повторной сборки целлюлозы в функциональные материалы. Использование древесины в качестве подложки для электронных устройств может помочь решить эту проблему в корне. Древесные материалы также особенно полезны для применений, требующих не только высокой механической прочности и масштабируемости, таких как мониторинг состояния конструкций (например, датчики деформации, встроенные в несущие конструкции), но также ценных эстетических и тактильных свойств (например, сенсорные экраны и световые дисплеи). как человеко-машинный интерфейс в умных зданиях).

Древесина — это возобновляемый и биоразлагаемый природный ресурс, накапливающий CO2, превосходный современный строительный материал с высоко оцененными эстетическими и тактильными свойствами, легкий, но обладающий высокой механической прочностью. Развитие деревянной электроники до сих пор ограничивалось сложной структурой древесины и отсутствием собственной электропроводности. Предыдущие попытки создать электропроводящие древесные материалы включали покрытие поверхности металлическими нанопроволоками7 и чернилами на основе углерода8, а также объемную пропитку, например, легкоплавкими металлами9. В этих подходах, независимо от их ограниченной устойчивости, древесина использовалась в качестве пассивного субстрата. Что касается других биологических субстратов, графитизация древесины при соответствующих условиях может привести к получению графеноподобных и графитоподобных материалов с приемлемыми электрическими свойствами (>500 См м-1 и <1 кОм ◻-1)10,11,12,13. Однако обычно это происходит за счет структурной и механической целостности. Поиск способа выборочного ограничения графитации на поверхности древесины, вплоть до нескольких микрон, но при этом сохраняя объем нетронутым, откроет новые возможности для деревянной электроники.

Лазерно-индуцированная графитизация (LIG) использовалась для преобразования различных неорганических14,15 и органических предшественников в электропроводящие материалы16,17,18. Этот процесс графитизации лучше всего можно описать как комбинированную фототермическую и фотохимическую конверсию предшественника, которая приводит к образованию пористого углеродистого материала. LIG — это экономичная технология, отличающаяся высокой скоростью обработки и гибкостью, позволяющая сочетать лазерную гравировку графитированных рисунков с контролируемой морфологией19 с лазерной резкой. Первые попытки лазерной графитизации биологических материалов16,20 привели к созданию продуктов с разумными, но не совсем достаточными электрическими и структурными свойствами для большинства предполагаемых применений, таких как крупномасштабные датчики и исполнительные механизмы.

69,000 cycles without significant performance losses (Fig. 4c, Supplementary Movie 4)./p>5 V µm−1 (with an operating frequency >1 kHz) is required to achieve reasonable brightness in conventional flexible EL devices72. Furthermore, we observed that by changing the operating voltage and frequency to 325 V and 50 Hz, respectively, the illuminated area became more uniform, and the emitted color changed from blue to light turquoise (Supplementary Fig. 16)./p>2 nm, following the suggestions of Matthews et al. can be expressed as follows (Eq. (2))73:/p>